redis

Clients

Java SpringBoot New

Introduction
Strings

Lists

Sets

ZSets

Hashes
Streams
Common Keys
Pipelining
Pub/Sub
Master/Replica
Sentinel
Cluster

Auto Config

Manual Config

Load Balancing (readFrom)
RedisTemplate

Connection Pool & Thread
Async Spring & Lettuce

DB select

Spring Multi Data Source
Lettuce Multi Data Source
Spring Project Create
Spring Project Eclipse
Spring Project Intelli)
Spring Session Standalone
Spring Session MasterRepli
Spring Session Sentinel
Spring Session Cluster

Java Lettuce(Spring)New

Java Lettuce(Plain)
Java Jedis

Java Redisson

C Hiredis

C# StackExchange
PHP PhpRedis
PHP Predis

Redis Admin &
Monitoring Tool

eri Shﬂq te Korea

login | 2|27t

redisGate Redis
ng/7|&XH SQL Application New:

BSTHAMH|A AM#: Active-Active 0| 53}

Spring Data Redis Pipelining

2 BC|A WXt mS Al % ol g718ar71sX 3 2ol A AEHZ2}O|= MH
matalm Redis Technical Support Redis Enterprise Server

Spring Data Redis Pipelining

e 1. Redis Pipelining (Redis &A1)
e 2. Spring Pipelining (Spring Data Redis &A{)

¢ 3.Java Pipelining Source

1. Redis Pipelining (Redis &A{)

Redis B8 S Y& X265t &5 A7HS 2| H3}st= YH

How to optimize round-trip times by batching Redis commands

Redis THO|Z 20| d 2 7)E HHO|| et SES 7|Ch2|X| g2
7|= 7|2 YLt oto|Z2t0] d 2 R = 2| Redis 2+0| 21
O| i ASI == 2 & 2 H 2t RedisO| A THO[Z2+0| 0| &*%OPE YA S dEL

._F #o| o2 ¥

mjo

Moto] 458 YA

Redis pipelining is a technique for improving performance by issuing multiple commands at once
without waiting for the response to each individual command. Pipelining is supported by most Redis
clients. This document describes the problem that pipelining is designed to solve and how pipelining
works in Redis.

SH/SEHEZES U R AT
Request/Response protocols and Round-Trip Time (RTT)

RedisE S2I0|E-MH DE A9 @KH/SE T2EES AMSHE TCP MHYLICH O]& YEtHo=z 9
HO| ohg T E Sl & S 20/
Redis is a TCP server using the client-server model and what is called a Request/Response protocol.

This means that usually a request is accomplished with the following steps:

o SZO|AEE MHO| HEIE EWHD LEH = XE HHo 2 20 M M SEES ASLICH
The client sends a query to the server, and reads from the socket, usually in a blocking way, for the server
response.

o MHE= S Mot SE2H0|AEN| SES ChAl 2ELCH
The server processes the command and sends the response back to the client.

o€ S0 47le] B ML= O Z5L.

So for instance a four commands sequence is something like this:

Client: INCR X
Server: 1
Client: INCR X
Server: 2
Client: INCR X
Server: 3
Client: INCR X
Server: 4

http://localhost:82/redisgate/ent/ent_active_active_duplex.php
http://localhost:82/index.html
http://localhost:82/index.html
http://localhost:82/redis/education/redis_education.php
http://localhost:82/redis/introduction/redis_intro.php
http://localhost:82/redis/sql/select_intro.php
http://localhost:82/redis/clients/spring_intro.php
http://localhost:82/redis/configuration/redis_conf_list.php
http://localhost:82/redis/sentinel/sentinel.php
http://localhost:82/redis/cluster/cluster.php
http://localhost:82/redis/clients/spring_intro.php
http://localhost:82/redis/clients/spring_strings.php
http://localhost:82/redis/clients/spring_lists.php
http://localhost:82/redis/clients/spring_sets.php
http://localhost:82/redis/clients/spring_zsets.php
http://localhost:82/redis/clients/spring_hashes.php
http://localhost:82/redis/clients/spring_streams.php
http://localhost:82/redis/clients/spring_common_keys.php
http://localhost:82/redis/clients/spring_pipeline.php
http://localhost:82/redis/clients/spring_pubsub.php
http://localhost:82/redis/clients/spring_masterreplica.php
http://localhost:82/redis/clients/spring_sentinel.php
http://localhost:82/redis/clients/spring_cluster.php
http://localhost:82/redis/clients/spring_pipeline_pdf.php
http://localhost:82/redis/clients/springboot_intro.php
http://localhost:82/redis/clients/springboot_manual_config.php
http://localhost:82/redis/clients/springboot_readfrom.php
http://localhost:82/redis/clients/springboot_redistemplate.php
http://localhost:82/redis/clients/springboot_connection_pool.php
http://localhost:82/redis/clients/springboot_async.php
http://localhost:82/redis/clients/springboot_dbselect.php
http://localhost:82/redis/clients/springboot_spring_multidatasource.php
http://localhost:82/redis/clients/springboot_lettuce_multidatasource.php
http://localhost:82/redis/clients/spring_project.php
http://localhost:82/redis/clients/spring_project_eclipse.php
http://localhost:82/redis/clients/spring_project_intellij.php
http://localhost:82/redis/clients/spring_pipeline_pdf.php
http://localhost:82/redis/clients/spring_session_redis_standalone.php
http://localhost:82/redis/clients/spring_session_redis_masterreplica.php
http://localhost:82/redis/clients/spring_session_redis_sentinel.php
http://localhost:82/redis/clients/spring_session_redis_cluster.php
http://localhost:82/redisgate/education/redis_education.php#edu_dev_course1
http://localhost:82/redisgate/education/redis_education.php#edu_dev_course1
http://localhost:82/redisgate/support/redis_techsupport.php
http://localhost:82/redisgate/support/redis_techsupport.php
http://localhost:82/redisgate/ent/ent_intro.php
http://localhost:82/redisgate/ent/ent_intro.php
https://redis.io/docs/manual/pipelining/
https://docs.spring.io/spring-data/data-redis/docs/3.1.3/reference/html/#pipeline

S3t0|olE9t MHE YYD YIS E¢) AZEFLICH 0|2{S YA L h2 w2 LR T QIE B 0|~) O
9 L4 UBLICHE SAE AO|0] B H0| Y QEUS S3) MHE HZ) YEYR Cf7| AlZto| 2
Q10|E TZ10| 2ELO| A= M M2 0| Se}1 SES FES}7| e ME{of M 2at0|9IE 2 CHA| 0| S8}
£ Gl AjZho] ZEct

Clients and Servers are connected via a network link. Such a link can be very fast (a loopback interface)
or very slow (a connection established over the Internet with many hops between the two hosts).
Whatever the network latency is, it takes time for the packets to travel from the client to the server,
and back from the server to the client to carry the reply.

O| A|Z+E RTT(Round Trip Time)O|2ta® BfLICt SEI0|AET AEHO = B2 @FS S0 & (0 E

S0 SUY FE0| B2 245 FIISI7LE B2 7|2 HO|EH 0| A S M= 82) 0| 20] 4&0) ofH &

2 018 5= A=K A L 5= UAELICHL OE S0/ RTT A[Zt0] 25022 =0 Z(AHUE S+ A7} 0f

2 L2 FR) M7 2 100,000700] RS M2l = UM E = Ao 4749 2FS Mg + A&H
Cf.

This time is called RTT (Round Trip Time). It's easy to see how this can affect performance when a client
needs to perform many requests in a row (for instance adding many elements to the same list, or
populating a database with many keys). For instance if the RTT time is 250 milliseconds (in the case of
a very slow link over the Internet), even if the server is able to process 100k requests per second, we'll
be able to process at max four requests per second.

A& QIEHO|AYV} 28 OIEHO|AQl AL RTT= X O Hon] Yetxo 2 22|k O|FHo|X| 2 A&
SHA B2 MT|E A OF Stz BR0il= O] 2t= F7HE LT

If the interface used is a loopback interface, the RTT is much shorter, typically sub-millisecond, but
even this will add up to a lot if you need to perform many writes in a row.

CHis| = Of AHE AM E 7| MY 4= U= LR AF LI

()

Fortunately there is a way to improve this use case.

2|C| & m}O| Z2}0]'d Redis Pipelining

S2H0l91E7t 0|7 SES OFX K| B2 ZL0IE A QNS X2lY 4+ YT S /S AHE UL 4
2 CHaIX| 20 AfB{0 O3 B HUiD OpR|te R 3 B2 S B2

[ELICH O| 2 ot SEE A 7ICHE| X
g + st
A Request/Response server can be implemented so that it is able to process new requests even if the
client hasn't already read the old responses. This way it is possible to send multiple commands to the
server without waiting for the replies at all, and finally read the replies in a single step.

O/ nfol 22/0]d0l2k2 810l 4 | SO W2l M8l JI@ULICk 08 S0 B POP3 2 P
2 0|0] 0] 7|52 X|@5t0] ME{O|A Af O|H 2 & CH22ESHE Z2MA & Hoz SyAIZ L.
This is called pipelining, and is a technique widely in use for many decades. For instance many POP3
protocol implementations already support this feature, dramatically speeding up the process of
downloading new emails from the server.

RedisE 7|2 E LO|Z2I0|d S XA nz ddll S HTO| 2t 80| RedisO|l M THO|Z2t0| &S At
88 4= ASUCL TZ2 Al netcat R E2Z|EIE AL 3= O LT
Redis has supported pipelining since its early days, so whatever version you are running, you can use

pipelining with Redis. This is an example using the raw netcat utility:

$ (printf "PING\r\nPING\r\nPING\r\n"; sleep 1) | nc localhost 6379

+PONG

+PONG

+PONG

$ printf "PING\r\nPING\\nPING\r\n" | nc localhost 6379 > 23() 0k 7ts

$ (printf "auth password\r\nPING\r\nPING\\nPING\r\n"; sleep 1) | nc localhost 6000 -> auth &7}
+OK

+PONG

+PONG

+PONG

O|H0l= 2= S E0| Th3li RTT HIE2 X[E3HA| @1 M| 7HA| BR0f| CHslf oF BTk X|SetL|Ct
This time we don't pay the cost of RTT for every call, but just once for the three commands.

Yets| YSHH K W o X o ZY =M= mto| =l g o) thaat 2 & LT

=)

To be explicit, with pipelining the order of operations of our very first example will be the following:

Client: INCR X
Client: INCR X
Client: INCR X
Client: INCR X
Server: 1
Server: 2
Server: 3
Server: 4

$ (printf "auth password\r\nINCR X\r\nINCR X\r\nINCR X\r\nINCR X\r\n"; sleep 1)
| nc localhost 6000

1

2

3

4

2 T AR S2H0|AETH IO Z2t0|d S AMBSIY Bl S El= a2 M= T2 2| E AH8SH 85

S 7| Qoj 2748 0F BLICH WatA 00| Z2t0| g AFB3I0] B2 WS = Lo st 42 242 g2l x el

=(0f: 10k BH)E Zast= HiXZ 20 SES A2 CHS E CHE 10k BE S CHA| 2= A0 E&LICH
HE = Ao SYSIX| 2 ALl =7 0| Z2[= 7|7AsiOF 0[2{3t 10k HEO CHst SE2 7o €& Ol

2ot FYLC

IMPORTANT NOTE: While the client sends commands using pipelining, the server will be forced to
queue the replies, using memory. So if you need to send a lot of commands with pipelining, it is better
to send them as batches each containing a reasonable number, for instance 10k commands, read the
replies, and then send another 10k commands again, and so forth. The speed will be nearly the same,
but the additional memory used will be at most the amount needed to queue the replies for these 10k
commands.

RTTZES| 2H| 7} OFELICE. It's not just a matter of RTT

uto| = 2}0|

CELESE

20| H0JE 2E0| o g !
£ 180 812 01 §7 WEYLICL IO read) L write) MAE £ 20| 2L

A YoM 7 YYOR 0[Sk HE olnjBtLCh HHYAE He

Yuct,

Lo gtE 4|
[e]

o
ﬂII

riok
a
o

=

~
o

x

~
1%}

=

=
[a]
=
rlo
1B
H
ujny
]
=
°Q

]

Pipelining is not just a way to reduce the latency cost associated with the round trip time, it actually
greatly improves the number of operations you can perform per second in a given Redis server. This is
because without using pipelining, serving each command is very cheap from the point of view of
accessing the data structures and producing the reply, but it is very costly from the point of view of
doing the socket /0. This involves calling the read() and write() syscall, that means going from user
land to kernel land. The context switch is a huge speed penalty.

ooj=Zzto|dS Ar85tH YBPH O = th read() Al2E = E2 2 HHES 910 B write() AILH =&
Z2ol2 SEHE TWEYLLL ZHHoz, =Y 85 = & A2 = MS0l= Tto|Z2telo] Zo{ A5 A
o MEHo = SItstny, o] IO EAIE 2 2= mto[=2tel §lo] 2 7| &2 10810 ==etLC.

When pipelining is used, many commands are usually read with a single read() system call, and
multiple replies are delivered with a single write() system call. Consequently, the number of total
queries performed per second initially increases almost linearly with longer pipelines, and eventually
reaches 10 times the baseline obtained without pipelining, as shown in this figure.

1. 1e+06

"/'tmp/pipelining"txt" B —

le+OG | 4

00000 |k E

200000 E

0000 k

EOOO00 | E

SO0000 |- k

400000 k

200000 F E

200000 - k

100000

20 40 EQ a0 100 120 140 160

X A E ofH| A real world code example
CHS #IlX|0p3.0f A & o] Z2t0| d & X| & SH= Redis Ruby 220|HEE AHESH0] mpo|Z2to|H oz QI
S Y2 HAER LD
In the following benchmark we'll use the Redis Ruby client, supporting pipelining, to test the speed
improvement due to pipelining:

require 'rubygems'
require 'redis'

def bench(descr)

start = Time.now

yield

puts "#{descr} #{Time.now - start} seconds
end

def without_pipelining
r = Redis.new
10_000.times do
r.ping
end
end

def with_pipelining
r = Redis.new
r.pipelined do
10_000.times do
r.ping
end
end
end

bench('without pipelining') do
without_pipelining

end

bench('with pipelining') do
with_pipelining

end

o
=]
of ZHEHSt ARBES MASHE 2T OIE|T|0|AE S8 /& Mac OS X AI2BO| M Thg 1 2I0] 44
ELCh of 7] M mo=2to|'d2 RTTZH 00| Of X7| W20 7He 22 74 M & MS LT

Running the above simple script yields the following figures on my Mac OS X system, running over the
loopback interface, where pipelining will provide the smallest improvement as the RTT is already pretty

low:

without pipelining 1.185238 seconds
with pipelining 0.250783 seconds

EAICHA|D ZhO|Z 20| d & AHESIY TES 5H S US LI

As you can see, using pipelining, we improved the transfer by a factor of five.
Pipelining vs Scripting

Redis 2.6 E| A& 7h53t Redis 23 EE 2 AFEoLH MH oA 2% B2 HYS st 23 HE
£ AHE310] Tho| Z2to] Jof CHE CHS AL Al & Bt 28X o2 Kalg = AL 23 8- 7HY
2 YT 2 Haco| 7] A2 HO|HE A £ 5= A0 ¢ 7| A, 27|22 % o
YEICHE AYLICH SEO|AEE 27| YH S 2 ES7| Hof| A7 BH SHO

M

= jo|Zetelo] =50 & X| gLt

ME
FOJ
2
>
T
]
to
2

Using Redis scripting, available since Redis 2.6, a number of use cases for pipelining can be addressed
more efficiently using scripts that perform a lot of the work needed at the server side. A big advantage
of scripting is that it is able to both read and write data with minimal latency, making operations like
read, compute, write very fast (pipelining can't help in this scenario since the client needs the reply of
the read command before it can call the write command).

2= O 22| 0| M0| IO =2} QI A EVAL o= EVALSHA B3 S EUigin & & Q&L Ol M X
O 2 7}538tH Redis= SCRIPT LOAD B2 &3l 0|8 YA|HCE X| AL CH (M 2/H 80| EVALSHAE

SESH 4 922 AT,

Sometimes the application may also want to send EVAL or EVALSHA commands in a pipeline. This is
entirely possible and Redis explicitly supports it with the SCRIPT LOAD command (it guarantees that
EVALSHA can be called without the risk of failing).

22 2mu OlEH 0| AVME AHE 5 227t =3 0|gE 2AUY P
Appendix: Why are busy loops slow even on the loopback interface?

Ol TO[X|of| M CHE 2= Hi B XM= 735t LSt 22 Redis #IX| 0t/ A 2 E)7F AH{ et 2210|
E

Evt Yo =Y Al2HOM 2l S I o8 QIH D020 M dHE W= =2 O|R7t HHDS| =5
g AF UL

Even with all the background covered in this page, you may still wonder why a Redis benchmark like
the following (in pseudo code), is slow even when executed in the loopback interface, when the server

and the client are running in the same physical machine:

FOR-ONE-SECOND:
Redis.SET("foo","bar")
END

Z= Redis Z2 M| A9 HIX|ONF 7} 25 S Aot SAHO M ddE[= B2 &X 7| AlZFOIL HIEZO] =
SHEX| G 22| HAIX|E & °|i|01|/\1 CHE fIXIZ SASHE A ofH7te?
After all, if both the Redis process and the benchmark are running in the same box, isn't it just copying

messages in memory from one place to another without any actual latency or networking involved?

T0IRE AIAHO| ZRN AT 84 AHElS U OfLID AHE TEHAS M@ A2
07| YR Lk, M0| S| S5 Bt Redis MBIOIA (TIRIUO 2 NS BT} 2218 S
B2 9T M YHS AYBLICH YH2 0[N R OIEHO| 2 BT UX|DH A

=54 |A 8122 @ 720
M Z2 MA@ ALY S E0|M AEHE)7F YR EF O ofsof gL Y. Mt 28Xl ZHOM 22
2 OIE M O|A0E HE AHER B Y22 QA O TS| L EQIAA FASTH7| AlZHO] ZEHE L L

The reason is that processes in a system are not always running, actually it is the kernel scheduler that
lets the process run. So, for instance, when the benchmark is allowed to run, it reads the reply from
the Redis server (related to the last command executed), and writes a new command. The command is
now in the loopback interface buffer, but in order to be read by the server, the kernel should schedule
the server process (currently blocked in a system call) to run, and so forth. So in practical terms the
loopback interface still involves network-like latency, because of how the kernel scheduler works.

JRHoZ HX R HIX|OISE HEYIZ HZE MH 2 452 53 [=8 = A= 71 o242
HYYLICH e Het A2 0| Aoz HX|0rY S mfshs AYLIE

Basically a busy loop benchmark is the silliest thing that can be done when metering performances on
a networked server. The wise thing is just avoiding benchmarking in this way.

2. Spring Pipelining (Spring Data Redis &A])

Redis= SE2 7ICI2|X| 1 02 @S MB{0f 2t CHg B BHAR SEHE = Tfo|=Z2t0|d2 A&
) A

s
210|d2 LS F 20| B2 245 F15s S 02| Y2 S22 BUoFE U

gLct. oo ot e ds8
A = JAFLICH

Spring Data Redis= RedisTemplate IO| Z 2} 210 A FH S HABL7| @/ of2f 7HX| &S M S LT
ool =l Zhjo| Zutof 2Halo| QICHH, mo|=2tel Ql4=0f trueE T ESIO] HE execute HMEE AL

g = AF L
CHS Ol M2+ Z 0| executePipelined M A E+& K|S El RedisCallback & SessionCallbackE IHO| =2} 210

M MRSl ZatE L

Redis provides support for pipelining, which involves sending multiple commands to the server
without waiting for the replies and then reading the replies in a single step. Pipelining can improve
performance when you need to send several commands in a row, such as adding many elements to
the same List.

Spring Data Redis provides several RedisTemplate methods for running commands in a pipeline. If you
do not care about the results of the pipelined operations, you can use the standard execute method,
passing true for the pipeline argument. The executePipelined methods run the provided RedisCallback
or SessionCallback in a pipeline and return the results, as shown in the following example:

//pop a specified number of items from a queue
List<Object> results = stringRedisTemplate.executePipelined(
new RedisCallback<Object>() {
public Object doInRedis(RedisConnection connection) throws DataAccessException {
StringRedisConnection stringRedisConn = (StringRedisConnection)connection;
for(int i=0; i< batchSize; i++) {
stringRedisConn.rPop("myqueue");

}
return null;
}
H;
2ol 0| 0f M= Zto| =2t Rlo| C7| B o M &5 2| CH2F RPOPES AT LICH O 7|0 = results List0fl= & =

°

BE Zote|of %% LICt. RedisTemplate 312 f, sHAl 7] L SHA| 2f 2 & M| & MBS 25 &
Btetsty| Mo A2 Htsta 2, of| K| of| A BretEl gtE2 EXAHE Y LICH executePipelined IO =20l
Of CHSH AHEXE X7 2 & WStV | & MEE = Ae FILHAMETL JE LT

mo|z=etel Yol ZIME gtatstr| 28l 0] 40| A1 £| 2 2 RedisCallbackOi| A HhehEl 42 null O] 0{OF B

Ao

N Eooot H
ENWﬂn_
ok

o

Lk

The preceding example runs a bulk right pop of items from a queue in a pipeline. The results List
contains all of the popped items. RedisTemplate uses its value, hash key, and hash value serializers to
deserialize all results before returning, so the returned items in the preceding example are Strings.
There are additional executePipelined methods that let you pass a custom serializer for pipelined
results.
Note that the value returned from the RedisCallback is required to be null, as this value is discarded in
favor of returning the results of the pipelined commands.

Lettuce E2tO|Hi= FEHO| LIEHS U] Z{AISHAL HIHASIALE HE0| EE I 2 5= A= M-It

E2{A| HOjE K| @gLct,

LettuceConnectionFactory factory =// ...

[2EZ HTH S M| HA) O S AL C

factory.setPipeliningFlushPolicy(PipeliningFlushPolicy.buffered(3));

3. Java Pipelining Source

Java Spring FrameworkE At&ot 2f C| A ItO| Z 2} Ql(Pipelining) B & AHE B LTt

Tto| =2kl M(stringRedisTemplate.executePipelined)2 Al ¢1Z2& MO X 2|8t1 & Z(close)gLICH
O Al 1)2 SET &2 100 MafshL|Ct,

O & 2)= RPOP E 2 1008 AietLCt.

Ol Kl 2)5 Alst7| Hofl List Gl F| 9) http://localhost:8080/listinput/mylistd S M| Algls A

HIOIHE HstM .
1007H2] HHO| SHHo| ELj, AupE SHtHo| &
i (bulk/batch) B X2|of AL8sHH Hs0| E&L .

.,.
ol
r

n
n

Redis08_Pipeline.java

package com.redisgate.redis;

import lombok.extern.slIf4j.SIf4j;

import org.springframework.dao.DataAccessException;

import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.connection.StringRedisConnection;
import org.springframework.data.redis.core.RedisCallback;

import org.springframework.data.redis.core.StringRedisTemplate;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RestController;

import java.util.List;
@RestController
@SIf4j
public class Redis08_Pipeline {
private final StringRedisTemplate stringRedisTemplate;
public Redis08_Pipeline(StringRedisTemplate stringRedisTemplate) {

this.stringRedisTemplate = stringRedisTemplate;
}

6 redis ate

/1 G & 1) SET 100%H &
/1 M HZZ B0l ME|5t3L B E(close) gt
// http://localhost:8080/pipe/100
@GetMapping("/pipeset/{count}")
public String pipeset(@PathVariable("count") int count) {
String msg = "0 X[1) Pipeline(SET) -> ;
List<Object> results = stringRedisTemplate.executePipelined(new RedisCallback<Object>() {
public Object doInRedis(RedisConnection connection) throws DataAccessException {
StringRedisConnection stringRedisConn = (StringRedisConnection)connection;
for(int i=0; i< count; i++) {
stringRedisConn.set("keyA"+String.format("-%05d",i),"value-"+String.format("%05d",i));
}
return null;
}
)
System.out.printin(msg+results.size());
results.forEach(System.out::printin);
return msg+results.size();

// Ol 2) RPOP 100 A &Y

/I M AEE UM HE|Bt S 2 (close)StLt.
// List O & 9) Ol M 225t CIO|E| & AFESHCL.
// http://localhost:8080/piperpop/100

@GetMapping("/piperpop/{count}")
public String piperpop(@PathVariable("count") int count) {
String msg = "0 X| 2) Pipeline(RPOP) -> ";
List<Object> results = stringRedisTemplate.executePipelined(new RedisCallback<Object>() {
public Object doInRedis(RedisConnection connection) throws DataAccessException {
StringRedisConnection stringRedisConn = (StringRedisConnection)connection;
for(int i=0; i< count; i++) {
stringRedisConn.rPop("mylist9");
}
return null;
}
)
System.out.printin(msg+results.size());
results.forEach(System.out::printin);
return msg+results.size();

}
<< Common Keys Pipelining Pub/Sub >>
DK redisgate@gmail.com \. 02.503.2235 Copyright © 2014-2024 redisGate

A e ZET B 342 MUY 55 (M) 2 0242 BN reserved

http://localhost:82/redis/clients/spring_common_keys.php
http://localhost:82/redis/clients/spring_pipeline.php
http://localhost:82/redis/clients/spring_pubsub.php

